Exact Search-to-Decision Reductions for Time-Bounded Kolmogorov Complexity

Shuichi Hirahara

National Institute of Informatics

Valentine Kabanets

Simon Fraser University

Zhenjian Lu

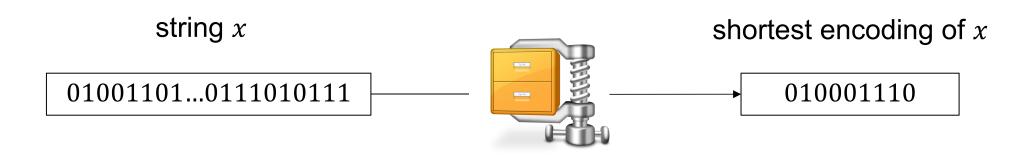
University of Warwick

Igor C. Oliveira

University of Warwick

CCC 2024

Overview



Suppose given a string x, we can efficiently compute the length of an optimal compression of x.

Can we also efficiently find such a compression?

Kolmogorov Complexity

Kolmogorov Complexity:

K(x) = "minimum length of a program $M \in \{0,1\}^*$ such that M outputs x"

Kolmogorov Complexity

Kolmogorov Complexity:

K(x) = "minimum length of a program $M \in \{0,1\}^*$ such that M outputs x"

Conditional Kolmogorov Complexity:

 $K(x \mid y) =$ "minimum length of a program $M \in \{0,1\}^*$ such that M outputs x given oracle (query) access to y"

Time-Bounded Kolmogorov Complexity

t-time-bounded Kolmogorov complexity:

 $K^t(x) =$ "minimum length of a program $M \in \{0,1\}^*$ such that M outputs x within time t"

Definition (MINKT):

- Input: $(x, 1^t, 1^s)$, where $x \in \{0,1\}^*$ and $t, s \in \mathbb{N}$
- Task: Decide whether $K^t(x) \leq s$

Definition (MINKT):

- **Input**: $(x, 1^t, 1^s)$, where $x \in \{0,1\}^*$ and $t, s \in \mathbb{N}$
- Task: Decide whether $K^t(x) \leq s$

By trying s = 1, 2, ..., |x| + O(1), solving MINKT allows us to compute $K^t(x)$, i.e., the length of a shortest t-time program that x

Computing K^t

Conjecture:

MINKT is NP-complete.

Serach-MINKT

Definition (Search-MINKT):

- Input: $(x, 1^t)$, where $x \in \{0,1\}^*$ and $t \in \mathbb{N}$
- Task: Find a shortest t-time program that outputs x, i.e.,
 - A program M such that $|M| = K^t(x)$
 - M outputs x within time t

Search-to-Decision

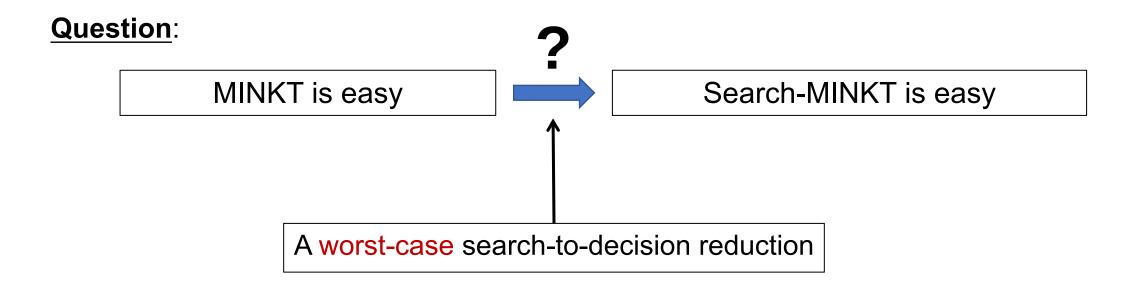
Question:

MINKT is easy

?

Search-MINKT is easy

Search-to-Decision



Question:

MINKT is easy on average

Search-MINKT is easy on average

MINKT is easy on average

Search-MINKT is easy on average

Easy on average:

For every poly-time samplable distribution D, there is an efficient algorithm that succeeds with high probability over a string $x \sim D$.

Question:

MINKT is easy on average

Search-MINKT is easy on average

Easy on average:

For every poly-time samplable distribution D, there is an efficient algorithm that succeeds with high probability over a string $x \sim D$.

Errorless

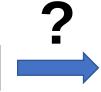
- The algorithm outputs a correct answer for almost all $x \sim D$.
- For the other x, the algorithm outputs \bot .

Error-Prone

- The algorithm outputs a correct answer for almost all $x \sim D$.
- For the other *x*, the algorithm can output a wrong answer.

Question:

MINKT is easy on average



Search-MINKT is easy on average

Easy on average:

For every poly-time samplable distribution D, there is an efficient algorithm that succeeds with high probability over a string $x \sim D$.

Errorless

- The algorithm outputs a correct answer for almost all $x \sim D$.
- For the other x, the algorithm outputs \bot .

Error-Prone

- The algorithm outputs a correct answer for almost all $x \sim D$.
- For the other x, the algorithm can output a wrong answer.

Question:

MINKT is easy on average



Search-MINKT is easy on average

Easy on average:

For every poly-time samplable distribution D, there is an efficient algorithm that succeeds with high probability over a string $x \sim D$.

Errorless

- The algorithm outputs a correct answer for almost all $x \sim D$.
- For the other x, the algorithm outputs \bot .

Error-Prone

- The algorithm outputs a correct answer for almost all $x \sim D$.
- For the other x, the algorithm can output a wrong answer.

Prior Work

Theorem [Liu-Pass'20]:

MINKT is easy on average over the uniform distribution in the error-prone setting

Search-MINKT is easy on average over the uniform distribution in the error-prone setting

Prior Work

Theorem [Liu-Pass'20]:

MINKT is easy on average over the uniform distribution in the error-prone setting

Search-MINKT is easy on average over the uniform distribution in the error-prone setting

Theorem [Liu-Pass'23]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{NSIZE}[2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in the error-prone setting

Theorem [Liu-Pass'23]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{NSIZE}[2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in the error-prone setting

Theorem [This work]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{SIZE} [2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in erroless (resp. error-prone) setting

Search-MINKT is easy on average over P-samplable distributions in erroless (resp. error-prone) setting

Theorem [Liu-Pass'23]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{NSIZE}[2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in the error-prone setting

Theorem [This work]: Assume $\mathbf{E} \not\subseteq \mathbf{i}$. \mathbf{o} . $\mathbf{SIZE}[2^{o(n)}]$

MINKT is easy on average over uniform distribution in erroless (resp. error-prone) setting

Search-MINKT is easy on average over P-samplable distributions in erroless (resp. error-prone) setting

Theorem [Liu-Pass'23]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{NSIZE}[2^{o(n)}]$

MINKT is easy on average over uniform distribution in the error-prone setting

Theorem [This work]: Assume $\mathbf{E} \not\subseteq \mathbf{i}$. o. $\mathbf{SIZE}[2^{o(n)}]$

MINKT is easy on average over uniform distribution in erroless (resp. error-prone) setting

Search-MINKT is easy on average over P-samplable distributions in erroless (resp. error-prone) setting

Theorem [Liu-Pass'23]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{NSIZE}[2^{o(n)}]$

MINKT is easy on average over uniform distribution in the error-prone setting

Search-MINKT is easy on average over P-samplable distributions in the error-prone setting

Can we get rid of the derandomization assumption?

Randomized Kolmogorov Compelxity

Randomized *t*-time-bounded Kolmogorov complexity:

 $rK_{\lambda}^{t}(x)$ = "minimum length of a randomized program $M \in \{0,1\}^{*}$ such that M outputs x within time t with probability $\geq \lambda$ "

Randomized *t*-time-bounded Kolmogorov complexity:

 $rK_{\lambda}^{t}(x)$ = "minimum length of a randomized program $M \in \{0,1\}^{*}$ such that M outputs x within time t with probability $\geq \lambda$ "

Definition (λ -MINrKT; First Attempt):

- **Input**: $(x, 1^t, 1^s)$, where $x \in \{0,1\}^*$ and $t, s \in \mathbb{N}$
- Task: Decide whether
 - $rK_{\lambda}^{t}(x) \leq s$ $rK_{\lambda}^{t}(x) > s$

Randomized *t*-time-bounded Kolmogorov complexity:

 $rK_{\lambda}^{t}(x)$ = "minimum length of a randomized program $M \in \{0,1\}^{*}$ such that *M* outputs *x* within time *t* with probability $\geq \lambda$ "

Definition (λ -MINrKT; First Attempt):

- **Input**: $(x, 1^t, 1^s)$, where $x \in \{0,1\}^*$ and $t, s \in \mathbb{N}$
- Task: Decide whether
 - $rK_{\lambda}^{t}(x) \leq s$ $rK_{\lambda}^{t}(x) > s$

This problem is not very natraul and can only be placed in 3-PP

Randomized *t*-time-bounded Kolmogorov complexity:

 $rK_{\lambda}^{t}(x)$ = "minimum length of a randomized program $M \in \{0,1\}^{*}$ such that M outputs x within time t with probability $\geq \lambda$ "

Definition (λ -MINrKT):

- **Input**: $(x, 1^t, 1^s, 1^k)$, where $x \in \{0,1\}^*$ and $t, s, k \in \mathbb{N}$
- Task: Decide whether

 - $rK_{\lambda}^{t}(x) \leq s$ $rK_{\lambda-1/k}^{t}(x) > s$

Randomized *t*-time-bounded Kolmogorov complexity:

 $rK_{\lambda}^{t}(x)$ = "minimum length of a randomized program $M \in \{0,1\}^{*}$ such that *M* outputs *x* within time *t* with probability $\geq \lambda$ "

Definition (λ -MINrKT):

- **Input**: $(x, 1^t, 1^s, 1^k)$, where $x \in \{0,1\}^*$ and $t, s, k \in \mathbb{N}$
- Task: Decide whether

• $rK_{\lambda}^{t}(x) \leq s$ • $rK_{\lambda-1/k}^{t}(x) > s$

This problem is in (promise) MA

Search MINrKT

Randomized *t*-time-bounded Kolmogorov complexity:

 $rK_{\lambda}^{t}(x)$ = "minimum length of a randomized program $M \in \{0,1\}^{*}$ such that M outputs x within time t with probability $\geq \lambda$ "

Definition (*λ*-Search-MINrKT):

- **Input**: $(x, 1^t, 1^k)$, where $x \in \{0,1\}^*$ and $t, s, k \in \mathbb{N}$
- Task: Find an (1/k)-r K_{λ}^{t} witness of x, i.e.,
 - A randomized program M such that $|M| \le rK_{\lambda}^{t}(x)$
 - *M* outputs *x* with probability at least $\lambda 1/k$

Average-Case Search-to-Decision for rK^t

Theorem [This work]:

λ-MINrKT is easy on average over P-samplable distributions in the erroless setting

Proof Ideas

Theorem [This work]: Assume $\mathbf{E} \not\subseteq \mathbf{i}$. o. $\mathbf{SIZE}[2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in the erroless setting

Theorem [This work]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{SIZE}[2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in the erroless setting

Search-MINKT is easy on average over P-samplable distributions in the erroless setting

High-Level Idea:

- Assume MINKT is easy on average.
- For a typical x from a **P**-samp distribution, there is an optimal t-time program $M \in \{0,1\}^*$ for x that admits a short encoding.
- We can then enumerate all such short encodings (and decode them) to find such an *M*.

Theorem [This work]: Assume $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{SIZE}[2^{o(n)}]$

MINKT is easy on average over P-samplable distributions in the erroless setting

Search-MINKT is easy on average over P-samplable distributions in the erroless setting

High-Level Idea:

- Assume MINKT is easy on average.
- For a typical x from a **P**-samp distribution, there is an optimal t-time program $M \in \{0,1\}^*$ for x that admits a short encoding.
- We can then enumerate all such short encodings (and decode them) to find such an M.

High-Level Idea:

- Assume MINKT is easy on average.
- For a typical x from a **P**-samp distribution, there is an optimal t-time program $M \in \{0,1\}^*$ for x that admits a short encoding.
- We can then enumerate all such short encodings (and decode them) to find such an *M*.

- Consider the lexicographically-first shortest t-time program M for x.
- We know that x has short description given M.
- Here, we want that *M* has short description given *x*, so we need some kind of "symmetry of information".

Symmetry of Information

If MINKT is easy on average, then we have symmtry of information for K^t [Hir20, GK22]

Symmetry of Information

If MINKT is easy on average, then we have symmtry of information for K^t [Hir20, GK22]

$$K(x, y) \lesssim K(x) + K(y \mid x)$$

Symmetry of Information

If MINKT is easy on average, then we have symmtry of information for K^t [Hir20, GK22]

$$K(x, y) \lesssim K(x) + K(y \mid x)$$

Symmetry of information for time-unbounded Kolmogorov complexity:

$$K(x, y) \gtrsim K(x) + K(y \mid x)$$

Symmetry of Information

If MINKT is easy on average, then we have symmtry of information for K^t [Hir20, GK22]

Symmetry of information for time-unbounded Kolmogorov complexity:

$$K(x,y) \gtrsim K(x) + K(y \mid x)$$

Does symmetry of information hold in the time-bounded setting, for K^t ?

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

Symmetry of Information

If MINKT is easy on average, then we have symmtry of information for K^t [Hir20, GK22]

Symmetry of information for time-unbounded Kolmogorov complexity:

$$K(x, y) \gtrsim K(x) + K(y \mid x)$$

Does symmetry of information hold in the time-bounded setting, for K^t ?

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

YES, assuming MINKT is easy on average and $\mathbf{E} \nsubseteq \mathbf{i.o.SIZE}[2^{o(n)}]$

If MINKT is easy on average, then we have:

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

• Fix x and t, let y_t be a shortest t-time program that outputs x.

If MINKT is easy on average, then we have:

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

• Fix x and t, let y_t be a shortest t-time program that outputs x.

•
$$K^{\text{poly}(2t)}(y_t \mid x) \leq K^{2t}(x, y_t) - K^{\text{poly}(2t)}(x)$$

$$\leq |y_t| - K^{\text{poly}(2t)}(x)$$

$$= K^{t}(x) - K^{\text{poly}(2t)}(x)$$

By Sol for K^t

Since given y_t , we can also recover x

If MINKT is easy on average, then we have:

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

• Fix x and t, let y_t be a shortest t-time program that outputs x.

•
$$K^{\text{poly}(2t)}(y_t \mid x) \lesssim K^{2t}(x, y_t) - K^{\text{poly}(2t)}(x)$$

$$\leq |y_t| - K^{\text{poly}(2t)}(x)$$

$$= K^{t}(x) - K^{\text{poly}(2t)}(x)$$

By Sol for K^t

Since given y_t , we can also recover x

If MINKT is easy on average, then we have:

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

• Fix x and t, let y_t be a shortest t-time program that outputs x.

•
$$K^{\text{poly}(2t)}(y_t \mid x) \leq K^{2t}(x, y_t) - K^{\text{poly}(2t)}(x)$$

$$\lesssim |y_t| - K^{\text{poly}(2t)}(x)$$

$$= K^{t}(x) - K^{\text{poly}(2t)}(x)$$

By Sol for K^t

Since given y_t , we can also recover x

If MINKT is easy on average, then we have:

$$K^{t}(x, y) \gtrsim K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x)$$

• Fix x and t, let y_t be a shortest t-time program that outputs x.

•
$$K^{\text{poly}(2t)}(y_t \mid x) \leq K^{2t}(x, y_t) - K^{\text{poly}(2t)}(x)$$

$$= K^t(x) - K^{\text{poly}(2t)}(x)$$

By Sol for K^t

Since given y_t , we can also recover x

If MINKT is easy on average, then we have:

• Fix x and t, let y_t be a shortest t-time program that outputs x.

$$K^{\text{poly}(t)}(y_t \mid x) \lesssim K^t(x) - K^{\text{poly}(t)}(x)$$

If $K^t(x) - K^{poly(t)}(x)$ is small, then y_t admits a short and efficient encoding given x!

If MINKT is easy on average, then we have:

• Fix x and t, let y_t be a shortest t-time program that outputs x.

$$K^{\text{poly}(t)}(y_t \mid x) \lesssim K^t(x) - K^{\text{poly}(t)}(x)$$

If $K^t(x) - K^{poly(t)}(x)$ is small, then y_t admits a short and efficient encoding given x!

<u>Claim</u>: If MINKT is easy on average, then $K^t(x) - K^{\text{poly}(t)}(x)$ is at most $O(\log t)$ for an average $x \sim D$

Conding Theorem

If MINKT is easy on average, then we have coding theorem for K^t [Hir18]

Conding Theorem

If MINKT is easy on average, then we have coding theorem for K^t [Hir18]

Coding theorem for time-unbounded Kolmogorov complexity: For every computable distribution D

$$K(x) \lesssim \log\left(\frac{1}{D(x)}\right)$$

Conding Theorem

If MINKT is easy on average, then we have coding theorem for K^t [Hir18]

Coding theorem for time-unbounded Kolmogorov complexity: For every computable distribution D

$$K(x) \leq \log\left(\frac{1}{D(x)}\right)$$

if MINKT is easy on average, then for every P-samplable dist D and large enough polynomial t

$$K^t(x) \lesssim \log\left(\frac{1}{D(x)}\right)$$

<u>Claim</u>: If MINKT is easy on average, then $K^t(x) - K^{poly(t)}(x)$ is small for an average $x \sim D$

<u>Claim</u>: If MINKT is easy on average, then $K^t(x) - K^{poly(t)}(x)$ is small for an average $x \sim D$

By the coding theorem for K^t , we have

$$K^t(x) \lesssim \log\left(\frac{1}{D(x)}\right)$$

<u>Claim</u>: If MINKT is easy on average, then $K^t(x) - K^{poly(t)}(x)$ is small for an average $x \sim D$

By the coding theorem for K^t , we have

$$K^t(x) \lesssim \log\left(\frac{1}{D(x)}\right)$$

Fact: For every distribution D, with high probability over $x \sim D$,

$$K^{\text{poly}(t)}(x) \ge K(x) \ge \log\left(\frac{1}{D(x)}\right)$$

What about rK^t ?

If MINKT is easy on average, and $\mathbf{E} \nsubseteq \mathbf{i.o.SIZE}[2^{o(n)}]$, then we have

- symmetry of information for K^t
- coding theorem for K^t

If MINKT is easy on average, and $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{SIZE}[2^{o(n)}]$, then we have

- symmetry of information for K^t
- coding theorem for K^t

We want to say that if MINrKT is easy on average, then we have

- symmetry of information for rK^t
- coding theorem for rK^t

If MINKT is easy on average, and $\mathbf{E} \nsubseteq \mathbf{i}. \mathbf{o}. \mathbf{SIZE}[2^{o(n)}]$, then we have

- symmetry of information for K^t
- coding theorem for K^t

We want to say that if MINrKT is easy on average, then we have

- symmetry of information for rK^t
- coding theorem for rK^t

Yes, but...

If MINKT is easy on average, and $\mathbf{E} \nsubseteq \mathbf{i.o.SIZE}[2^{o(n)}]$, then we have

• symmetry of information for K^t

$$K^{t}(x, y) \ge K^{\text{poly}(t)}(x) + K^{\text{poly}(t)}(y \mid x) - \log(t)$$

coding theorem for K^t

$$\mathbf{K}^{t}(x) \leq \log(1/D(x)) + \log(t)$$

If MINrKT is easy on average, then we have

• symmetry of information for rK^t

$$rK^{t}(x, y) \ge rK^{poly(t)}(x) + rK^{poly(t)}(y \mid x) - polylog(t)$$

coding theorem for rK^t

$$rK^{t}(x) \le \log(1/D(x)) + \mathbf{polylog}(t)$$

If MINrKT is easy on average, then we have

- symmetry of information for rK^t with polylog overhead
- coding theorem for rK^t with polylog overhead

This will give a quasi-polynomial-time search-to-decision reduction for rK^t

If MINrKT is easy on average, then we have

- symmetry of information for rK^t with polylog overhead
- coding theorem for rK^t with polylog overhead

If MINrKT is easy on average, then we have

- symmetry of information for pK^t with log overhead [Goldberg-Kabanets-L.-Oliveira'22]
- coding theorem for pK^t with log overhead [L.-Oliveira-Zimand'22]

If MINrKT is easy on average, then we have

symmetry of information for pK^t

$$pK^{t}(x, y) \ge pK^{poly(t)}(x) + pK^{poly(t)}(y \mid x) - \log(t)$$

coding theorem for pK^t

$$pK^{t}(x) \le \log(1/D(x)) + \log(t)$$

Fix x and t, let y_t be a shortest t-time randomized program that outputs x.

If MINrKT is easy on average, then we have

• symmetry of information for pK^t

$$pK^{t}(x, y) \ge pK^{poly(t)}(x) + pK^{poly(t)}(y \mid x) - \log(t)$$

coding theorem for pK^t

$$pK^{t}(x) \le \log(1/D(x)) + \log(t)$$

Fix x and t, let y_t be a shortest t-time randomized program that outputs x.

•
$$pK^{poly(2t)}(y_t \mid x) \leq pK^{2t}(x, y_t) - pK^{poly(2t)}(x)$$

$$\leq |y_t| - pK^{\text{poly}(2t)}(x)$$

$$= rK^{t}(x) - pK^{poly(2t)}(x)$$

If MINrKT is easy on average, then we have

- symmetry of information for pK^t
- $pK^{t}(x, y) \ge pK^{poly(t)}(x) + pK^{poly(t)}(y \mid x) \log(t)$

coding theorem for pK^t

$$pK^{t}(x) \le \log(1/D(x)) + \log(t)$$

Fix x and t, let y_t be a shortest t-time randomized program that outputs x.

• $pK^{poly(t)}(y_t \mid x) \leq rK^t(x) - pK^{poly(t)}(x)$

We want $rK^t(x) - pK^{poly(t)}(x)$ to be small for an average x.

If MINrKT is easy on average, then we have

symmetry of information for pK^t

$$pK^{t}(x, y) \ge pK^{poly(t)}(x) + pK^{poly(t)}(y \mid x) - \log(t)$$

coding theorem for pK^t

$$pK^{t}(x) \le \log(1/D(x)) + \log(t)$$

Fix x and t, let y_t be a shortest t-time randomized program that outputs x.

• $pK^{poly(t)}(y_t \mid x) \leq rK^t(x) - pK^{poly(t)}(x)$

We want $rK^t(x) - pK^{poly(t)}(x)$ to be small for an average x.

But this requires coding for rK^t ...

If MINrKT is easy on average, then we have

symmetry of information for pK^t

$$pK^{t}(x, y) \ge pK^{poly(t)}(x) + pK^{poly(t)}(y \mid x) - \log(t)$$

coding theorem for pK^t

$$pK^{t}(x) \le \log(1/D(x)) + \log(t)$$

Fix x and t, let y_t be a shortest t-time randomized program that outputs x.

- $pK^{poly(t)}(y_t \mid x) \leq rK^t(x) pK^{poly(t)}(x)$
- $\leq O(pK^t(x) K(x))$

via a magical lemma that we proved!

If MINrKT is easy on average, then we have

symmetry of information for pK^t

$$pK^{t}(x, y) \ge pK^{poly(t)}(x) + pK^{poly(t)}(y \mid x) - \log(t)$$

coding theorem for pK^t

$$pK^{t}(x) \le \log(1/D(x)) + \log(t)$$

Fix x and t, let y_t be a shortest t-time randomized program that outputs x.

- $pK^{poly(t)}(y_t \mid x) \leq rK^t(x) pK^{poly(t)}(x)$
- $\leq O(pK^t(x) K(x))$

via a magical lemma that we proved!

This is small for an average x, by the coding theorem for pK^t

Open Problems

Can we get worst-case search-to-decision reductions?

Theorem [This work]

MINrKT is easy on average

An algorithm **A** that, given x, runs in $2^{O(n/\log n)}$ time and outputs an o(1)-rK^t witness of x, for some $poly(n) \le t \le 2^{n^{\varepsilon}}$

Thank you!