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string � shortest encoding of �

Overview

Can we also efficiently find such a compression?

Suppose given a string �, we can efficiently 
compute the length of an optimal compression of �.
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K � | � = “minimum length of a program � ∈ {0,1}∗ such 
that � outputs � given oracle (query) access to �”

Conditional Kolmogorov Complexity:



K� � = “minimum length of a program � ∈ {0,1}∗ such that � 
outputs � within time �”

�-time-bounded Kolmogorov complexity:

Time-Bounded Kolmogorov Complexity



• Input:  �, 1�, 1� , where � ∈ {0,1}∗ and �, � ∈ ℕ

• Task: Decide whether K� � ≤ �
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• Input:  �, 1�, 1� , where � ∈ {0,1}∗ and �, � ∈ ℕ

• Task: Decide whether K� � ≤ �

Definition (MINKT):

Decision MINKT

By trying � = 1,2, . . . , |�| + � 1 , solving MINKT allows us to compute K� � , i.e., 
the length of a shortest �-time program that �  



MINKT is NP-complete.Conjecture:

Computing K�



• Input:  �, 1� , where � ∈ {0,1}∗ and � ∈ ℕ

• Task: Find a shortest �-time program that outputs �, i.e.,

• A program � such that |�| = K� � 

• � outputs � within time �

Definition (Search-MINKT):

Serach-MINKT
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answer for almost all � ~ �.

 

• For the other �, the algorithm 
outputs ⊥.

Error-Prone

• The algorithm outputs a correct 
answer for almost all � ~ �.

 

• For the other �, the algorithm can 
output a wrong answer.

Easy on average: For every poly-time samplable distribution �, there is an efficient 
algorithm that succeeds with high probability over a string � ~ �.
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Conditional Search-to-Decision

Can we get rid of the derandomization assumption?

Search-MINKT is easy on average 
over P-samplable distributions in 

erroless (resp. error-prone) setting

Theorem [This work]: Assume � ⊈ �. �. ���� 2� �   

MINKT is easy on average 
over uniform distribution in 

erroless (resp. error-prone) setting

Search-MINKT is easy on average 
over P-samplable distributions in 

the error-prone setting

Theorem [Liu-Pass’23]: Assume � ⊈ �. �. ����� 2� �  

MINKT is easy on average 
over uniform distribution in the 

error-prone setting



Randomized Kolmogorov Compelxity

rK�
�  � = “minimum length of a randomized program � ∈ {0,1}∗ 

such that � outputs � within time � with probability ≥ �”

Randomized �-time-bounded Kolmogorov complexity:



Decision MINrKT

rK�
�  � = “minimum length of a randomized program � ∈ {0,1}∗ 

such that � outputs � within time � with probability ≥ �”

Randomized �-time-bounded Kolmogorov complexity:

• Input:  �, 1�, 1� , where � ∈ {0,1}∗ and �, � ∈ ℕ

• Task: Decide whether

• rK�
�  � ≤ �

• rK�
�  � > �

Definition (�-MINrKT; First Attempt):



Decision MINrKT

rK�
�  � = “minimum length of a randomized program � ∈ {0,1}∗ 

such that � outputs � within time � with probability ≥ �”

Randomized �-time-bounded Kolmogorov complexity:

• Input:  �, 1�, 1� , where � ∈ {0,1}∗ and �, � ∈ ℕ

• Task: Decide whether

• rK�
�  � ≤ �

• rK�
�  � > �

Definition (�-MINrKT; First Attempt):

This problem is not very natraul 
and can only be placed in ∃∙PP



Decision MINrKT

rK�
�  � = “minimum length of a randomized program � ∈ {0,1}∗ 

such that � outputs � within time � with probability ≥ �”

Randomized �-time-bounded Kolmogorov complexity:

• Input:  �, 1�, 1�, 1� , where � ∈ {0,1}∗ and �, �, � ∈ ℕ

• Task: Decide whether

• rK�
�  � ≤ �

• rK�−1/�
�  � > �

Definition (�-MINrKT):



Decision MINrKT

rK�
�  � = “minimum length of a randomized program � ∈ {0,1}∗ 

such that � outputs � within time � with probability ≥ �”

Randomized �-time-bounded Kolmogorov complexity:

• Input:  �, 1�, 1�, 1� , where � ∈ {0,1}∗ and �, �, � ∈ ℕ

• Task: Decide whether

• rK�
�  � ≤ �

• rK�−1/�
�  � > �

Definition (�-MINrKT):

This problem is in (promise) MA



Search MINrKT

rK�
�  � = “minimum length of a randomized program � ∈ {0,1}∗ 

such that � outputs � within time � with probability ≥ �”

Randomized �-time-bounded Kolmogorov complexity:

• Input:  �, 1�, 1� , where � ∈ {0,1}∗ and �, �, � ∈ ℕ

• Task: Find an  1/� -rK�
�  witness of �, i.e.,

• A randomized program � such that |�| ≤ rK�
�  �  

• � outputs � with probability at least � − 1/�

Definition (�-Search-MINrKT):



Average-Case Search-to-Decision for rK�
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Proof Overview 

High-Level 
Idea:

• Assume MINKT is easy on average.

• For a typical � from a P-samp distribution, there is an optimal 
�-time program � ∈ {0,1}∗ for � that admits a short encoding.

• We can then enumerate all such short encodings (and decode 
them) to find such an M.

• Consider the lexicographically-first shortest �-time program � for �. 

• We know that � has short description given �. 

• Here, we want that � has short description given �, so we need some kind of 
“symmetry of information”.
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If MINKT is easy on average, then we have symmtry of information for K� [Hir20, GK22]

K �, � ≳ K � + K � | � 

Symmetry of information for time-unbounded Kolmogorov complexity:

K� �, � ≳ Kpoly �  � + Kpoly �  � | � 

Does symmetry of information hold in the time-bounded setting, for K�?

YES, assuming MINKT 
is easy on average and 

� ⊈ �. �. ���� 2� �    
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If MINKT is easy on average, then we have: 

Kpoly �  �� | �   ≲  K� � − Kpoly �  � 

Proof Overview 

If K� � − Kpoly �  �  is small, then �� admits a short and efficient encoding given �!

• Fix � and �, let �� be a shortest �-time program that outputs �.

Claim: If MINKT is easy on average, then K� � − Kpoly �  �  is at most � log �  
for an average � ~ � 
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K � ≲ log  
1

� �  

Coding theorem for time-unbounded Kolmogorov complexity: For every computable distribution �

K� � ≲ log  
1

� �  

if MINKT is easy on average, then for every P-samplable dist � and large enough polynomial �
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Proof Overview 

K� � ≲ log  
1

� �  

By the coding theorem for K�, we have
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Proof Overview 

Kpoly �  �   ≥ K � ≳ log  
1

� �  

Fact: For every distribution �, with high probability over �~�,

K� � ≲ log  
1

� �  

By the coding theorem for K�, we have

Claim: If MINKT is easy on average, then K� � − Kpoly �  �  is small for an average � ~ � 



What about rK�?
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Proof Overview 

If MINrKT is easy on average, then we have

• symmetry of information for rK� with polylog overhead

• coding theorem for rK� with polylog overhead

This will give a quasi-polynomial-time 
search-to-decision reduction for rK� 
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If MINrKT is easy on average, then we have
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• coding theorem for pK� with log overhead [L.-Oliveira-Zimand’22]
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• coding theorem for rK� with polylog overhead
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We want rK� � − pKpoly �  �  to 
be small for an average �.• pKpoly �  �� | �   ≲  rK� � − pKpoly �  � 

But this requires coding for rK�...
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• pKpoly �  �� | �   ≲  rK� � − pKpoly �  � 

•                                 ≤ � pK� � − K �  via a magical lemma that we proved!

This is small for an average �, by the coding theorem for pK�  

If MINrKT is easy on average, then we have

• symmetry of information for pK�

• coding theorem for pK�

pK� �, � ≥ pKpoly �  � + pKpoly �  � | � − ��� � 

pK� � ≤ log  1/� �  + ��� � 

Fix � and �, let �� be a shortest �-time randomized program that outputs �.



Open Problems

• Can we get worst-case search-to-decision reductions?

An algorithm A that, given �, runs in 
2� �/log �  time and outputs an � 1 -rK� 
witness of �, for some poly � ≤ � ≤ 2�� 

Theorem [This work] 

MINrKT is easy on average 



Thank you!


