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string

01001101...0111010111

Overview

shortest encoding of

010001110

Suppose given a string , we can efficiently
compute the length of an optimal compression of .

Can we also efficiently find such a compression?
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K ="minimum length of a program {0,1}
such that outputs ”
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Kolmogorov Complexity:

K ="minimum length of a program {0,1}
such that outputs ”

Conditional Kolmogorov Complexity:

K | ="minimum length of a program {0,1} such
that outputs given oracle (query) accessto ”




Time-Bounded Kolmogorov Complexity

-time-bounded Kolmogorov complexity:

K

= “minimum length of a program
outputs within time

{0,1} such that
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Decision MINKT

Definition (MINKT):

e Input: ,1,1 ,where {0,1} and ,

« Task: Decide whether K <

Bytrying =12,...,] |+ 1, solving MINKT allows us to compute K , i.e.,
the length of a shortest -time program that




Computing K

Conjecture:

MINKT is NP-complete.




Serach-MINKT

Definition (Search-MINKT):

Input:

1 , where {0,1} and

Task: Find a shortest -time program that outputs

Aprogram suchthat| |=K

outputs within time

l.e.,
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Search-MINKT is easy

A worst-case search-to-decision reduction
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Average-Case Search-to-Decision

Question: )

MINKT is easy on average | mmmm) | Search-MINKT is easy on average

For every poly-time samplable distribution |, there is an efficient

Easy on average:

algorithm that succeeds with high probability over a string ~

Errorless Error-Prone
« The algorithm outputs a correct « The algorithm outputs a correct
answer for almost all ~ . answer for almost all ~
* Forthe other , the algorithm * Forthe other , the algorithm can
outputs . output a wrong answer.
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Can we get rid of the derandomization assumption?




¢

Randomized Kolmogorov Compelxity

Randomized -time-bounded Kolmogorov complexity:

&%

rk

= “minimum length of a randomized program

such that

outputs within time with probability = ”

0.1}
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Decision MINrKT

Randomized -time-bounded Kolmogorov complexity:

rK = “minimum length of a randomized program {0,1}
such that outputs within time with probability = ”

Definition ( -MINrKT; First Attempt):

e Input: ,1,1 ,where {0,1} and ,

« Task: Decide whether

This problem is not very natraul
© 1K = and can only be placed in -PP

e rK >




Decision MINrKT

Randomized -time-bounded Kolmogorov complexity:

rK = “minimum length of a randomized program
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Definition ( -MINrKT):

Input:
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Decision MINrKT

Randomized -time-bounded Kolmogorov complexity:

rK = “minimum length of a randomized program {0,1}
such that outputs within time with probability = ”

Definition ( -MINrKT):

e Input: ,1,1,1 ,where {0,1} and , ,

« Task: Decide whether

« rK < This problem is in (promise) MA

* K _yy >




Search MINrKT

Randomized -time-bounded Kolmogorov complexity:

rK = “minimum length of a randomized program
such that outputs within time with probability = ”

0.1}

Definition ( -Search-MINrKT):

Input: ,1,1 , where {0,1} and , ,

Task: Findan 1/ -rK witness of |, i.e.,
 Arandomized program  such that |

. outputs with probability at least

| < rK

-1/




Average-Case Search-to-Decision for rK

Theorem [This work]:

-MINrKT is easy on average -Search-MINrKT is easy on average
over P-samplable distributions in ) over P-samplable distributions in
the erroless setting the erroless setting
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High-Level
|dea:

Proof Overview

Assume MINKT is easy on average.

For a typical from a P-samp distribution, there is an optimal
-time program {0,1} for that admits a short encoding.

We can then enumerate all such short encodings (and decode
them) to find such an M.

« Consider the lexicographically-first shortest -time program for .

« We know that

has short description given

 Here, we want that has short description given , so we need some kind of
“‘symmetry of information”.
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If MINKT is easy on average, then we have symmiry of information for K [Hir20, GK22]

Symmetry of information for time-unbounded Kolmogorov complexity:

K, K +K |

Does symmetry of information hold in the time-bounded setting, for K ?

| |

K KPOWY +KPOY ] YES, assuming MINKT

IS easy on average and
2
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Proof Overview

If MINKT is easy on average, then we have: K KpPoly + KPoly |

« Fix and ,let be ashortest -time program that outputs

. KPOly 2 | K2 , —KPoly?2 By Sol for K
. | | —KPoly?2 Since given , we can also recover
. — _ kpoly 2 , _ ,
= K N Since is a shortest -time program for




Proof Overview

If MINKT is easy on average, then we have:

« Fix and ,let be ashortest -time program that outputs

KPoly | K — Kpoly

If K — KPoly is small, then  admits a short and efficient encoding given !



Proof Overview

If MINKT is easy on average, then we have:

« Fix and ,let be ashortest -time program that outputs

Kpoly | K

— Kpoly

If K — Kpoly

\

is small, then  admits a short and efficient encoding given

Claim: If MINKT is easy on average, then K
for an average

—~—

— Kpoly

IS at most

log
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Conding Theorem

If MINKT is easy on average, then we have [Hir18]

Coding theorem for time-unbounded Kolmogorov complexity: For every computable distribution

1
K log —

if MINKT is easy on average, then for every P-samplable dist and large enough polynomial

1
K log —
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Proof Overview

Claim: If MINKT is easy on average, then K

— Kpoly is small for an average

—~—

By the

. we have

K

log —




Proof Overview

Claim: If MINKT is easy on average, then K — KPoly is small for an average ~

By the we have

1
K log —

Fact: For every distribution , with high probability over ~

1
Kpoly > K log ——




What about rK ?
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Proof Overview

If MINKT is easy on average, and o 2 . then we have

« symmetry of information for K

« coding theorem for K

We want to say that if MINrKT is easy on average, then we have

« symmetry of information for rk

Yes, but...

« coding theorem for rK



Proof Overview

If MINKT is easy on average, and

If MINrKT is easy on average, then we have

symmetry of information for K

coding theorem for K

symmetry of information for rK

coding theorem for rK

2

. then we have

> KPpoly + KPO

ly

K

<log 1/

rK

= rKpoly

+ rKPoly

rK

<log 1/

-+




Proof Overview

If MINFKT is easy on average, then we have
« symmetry of information for rK with polylog overhead

« coding theorem for rK with polylog overhead

This will give a quasi-polynomial-time
search-to-decision reduction for rK




Proof Overview

If MINFKT is easy on average, then we have
« symmetry of information for rK with polylog overhead

« coding theorem for rK with polylog overhead

If MINrKT is easy on average, then we have
« symmetry of information for pK with log overhead [Goldberg-Kabanets-L.-Oliveira’22]

« coding theorem for pK with log overhead [L.-Oliveira-Zimand’22]
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If MINrKT is easy on average, then we have

Proof Overview

« symmetry of information for pK pK

« coding theorem for pK

Fix and , let

> pron

+ pKPoly

pK

<log 1/

—+

be a shortest -time randomized program that outputs

pron 2

= rK
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Proof Overview

If MINrKT is easy on average, then we have

« symmetry of information for pK pK , = pKProly + pKPoly —

» coding theorem for pK pK <log 1/ +

Fix and ,let be ashortest -time randomized program that outputs

We want rKk ~ — pKPoY to
be small for an average

« pKPoly | rK — pKPoly

But this requires coding for rK ...




If MINrKT is easy on average, then we have

Proof Overview

« symmetry of information for pK pK

« coding theorem for pK

Fix and , let

= pKPoly + pKPoly —

pK

<log 1/ +

be a shortest -time randomized program that outputs

prOly

rK

— pron

via a magical lemma that we proved!




Proof Overview

If MINrKT is easy on average, then we have

« symmetry of information for pK pK , = pKProly + pKPoly —

» coding theorem for pK pK <log 1/ +

Fix and ,let be ashortest -time randomized program that outputs

« pKPoly | rK — pKPoly

. < pK —K via a magical lemma that we proved!

This is small for an average , by the coding theorem for pK




Open Problems

« Can we get worst-case search-to-decision reductions?

Theorem [This work]

An algorithm A that, given , runs in

MINrKT is easy on average mmm) 2 /°9 time andoutputsan 1 -rK

witness of , forsomepoly = <2




Thank you!



